Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.759
Filtrar
1.
Natl Sci Rev ; 11(4): nwae074, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38623452

RESUMEN

Tropospheric reactive bromine is important for atmospheric chemistry, regional air pollution, and global climate. Previous studies have reported measurements of atmospheric reactive bromine species in different environments, and proposed their main sources, e.g. sea-salt aerosol (SSA), oceanic biogenic activity, polar snow/ice, and volcanoes. Typhoons and other strong cyclonic activities (e.g. hurricanes) induce abrupt changes in different earth system processes, causing widespread destructive effects. However, the role of typhoons in regulating reactive bromine abundance and sources remains unexplored. Here, we report field observations of bromine oxide (BrO), a critical indicator of reactive bromine, on the Huaniao Island (HNI) in the East China Sea in July 2018. We observed high levels of BrO below 500 m with a daytime average of 9.7 ± 4.2 pptv and a peak value of ∼26 pptv under the influence of a typhoon. Our field measurements, supported by model simulations, suggest that the typhoon-induced drastic increase in wind speed amplifies the emission of SSA, significantly enhancing the activation of reactive bromine from SSA debromination. We also detected enhanced BrO mixing ratios under high NOx conditions (ppbv level) suggesting a potential pollution-induced mechanism of bromine release from SSA. Such elevated levels of atmospheric bromine noticeably increase ozone destruction by as much as ∼40% across the East China Sea. Considering the high frequency of cyclonic activity in the northern hemisphere, reactive bromine chemistry is expected to play a more important role than previously thought in affecting coastal air quality and atmospheric oxidation capacity. We suggest that models need to consider the hitherto overlooked typhoon- and pollution-mediated increase in reactive bromine levels when assessing the synergic effects of cyclonic activities on the earth system.

2.
J Chromatogr A ; 1722: 464884, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38615558

RESUMEN

The removal of excess bilirubin from blood is of great clinical importance. Reduced graphene oxide (rGO) is often used to efficiently remove bilirubin. However, thin rGO pieces tend to aggregate in the aqueous phase because they are hydrophobic. In this context, we propose an effective strategy based on the chitosan-assisted (CS-assisted) dispersion of rGO to produce high-performance bilirubin-adsorbing microspheres. CS possesses a hydrophobic CH structure, which offers strong hydrophobic interactions with rGO that assist its dispersion, and the large number of hydrophilic sites of CS increases the hydrophilicity of rGO. CS serves as a dispersant in a surfactant-like manner to achieve a homogeneous and stable CS/rGO dispersion by simply and gently stirring CS and rGO in a LiOH/KOH/urea/H2O system. Subsequently, CS/rGO hybrid microspheres were prepared by emulsification. CS ensures blood compatibility as a base material, and the entrapped rGO contributes to mechanical strength and a high adsorption capacity. The CS/rGO microspheres exhibited a high bilirubin adsorption capacity (215.56 mg/g), which is significantly higher than those of the rGO and CS microspheres. The determined mass-transfer factors revealed that the rich pores of the CS/rGO microspheres promote mass transfer during bilirubin adsorption (equilibrium is almost achieved within 30 min). The CS/rGO microspheres are promising candidates for bilirubin removal owing to a combination of high strength, blood compatibility, and high adsorption capacity.


Asunto(s)
Bilirrubina , Quitosano , Grafito , Interacciones Hidrofóbicas e Hidrofílicas , Microesferas , Grafito/química , Quitosano/química , Bilirrubina/química , Bilirrubina/aislamiento & purificación , Bilirrubina/sangre , Adsorción , Humanos
3.
Cell Mol Immunol ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641698

RESUMEN

γδ T cells play a crucial role in immune surveillance and serve as a bridge between innate and adaptive immunity. However, the metabolic requirements and regulation of γδ T-cell development and function remain poorly understood. In this study, we investigated the role of liver kinase B1 (Lkb1), a serine/threonine kinase that links cellular metabolism with cell growth and proliferation, in γδ T-cell biology. Our findings demonstrate that Lkb1 is not only involved in regulating γδ T lineage commitment but also plays a critical role in γδ T-cell effector function. Specifically, T-cell-specific deletion of Lkb1 resulted in impaired thymocyte development and distinct alterations in γδ T-cell subsets in both the thymus and peripheral lymphoid tissues. Notably, loss of Lkb1 inhibited the commitment of Vγ1 and Vγ4 γδ T cells, promoted the maturation of IL-17-producing Vγ6 γδ T cells, and led to the occurrence of fatal autoimmune hepatitis (AIH). Notably, clearance of γδ T cells or blockade of IL-17 significantly attenuated AIH. Mechanistically, Lkb1 deficiency disrupted metabolic homeostasis and AMPK activity, accompanied by increased mTORC1 activation, thereby causing overactivation of γδ T cells and enhanced apoptosis. Interestingly, activation of AMPK or suppression of mTORC1 signaling effectively inhibited IL-17 levels and attenuated AIH in Lkb1-deficient mice. Our findings highlight the pivotal role of Lkb1 in maintaining the homeostasis of γδ T cells and preventing IL-17-mediated autoimmune diseases, providing new insights into the metabolic programs governing the subset determination and functional differentiation of thymic γδ T cells.

4.
Environ Sci Technol ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38629952

RESUMEN

Ozone (O3) profiles are crucial for comprehending the intricate interplay among O3 sources, sinks, and transport. However, conventional O3 monitoring approaches often suffer from limitations such as low spatiotemporal resolution, high cost, and cumbersome procedures. Here, we propose a novel approach that combines multiaxis differential optical absorption spectroscopy (MAX-DOAS) and machine learning (ML) technology. This approach allows the retrieval of O3 profiles with exceptionally high temporal resolution at the minute level and vertical resolution reaching the hundred-meter scale. The ML models are trained using parameters obtained from radiative transfer modeling, MAX-DOAS observations, and a reanalysis data set. To enhance the accuracy of retrieving the aqueous phosphorus from O3, we employ a stacking approach in constructing ML models. The retrieved MAX-DOAS O3 profiles are compared to data from an in situ instrument, lidar, and satellite observation, demonstrating a high level of consistency. The total error of this approach is estimated to be within 25%. On balance, this study is the first ground-based passive remote sensing of high time-height-resolved O3 distribution from ground to the stratopause (0-60 km). It opens up new avenues for enhancing our understanding of the dynamics of O3 in atmospheric environments. Moreover, the cost-effective and portable MAX-DOAS combined with this versatile profiling approach enables the potential for stereoscopic observations of various trace gases across multiple platforms.

5.
Acta Physiol (Oxf) ; : e14142, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38584589

RESUMEN

AIM: Astrocytes respond to stressors by acquiring a reactive state characterized by changes in their morphology and function. Molecules underlying reactive astrogliosis, however, remain largely unknown. Given that several studies observed increase in the Amyloid Precursor Protein (APP) in reactive astrocytes, we here test whether APP plays a role in reactive astrogliosis. METHODS: We investigated whether APP instigates reactive astroglios by examining in vitro and in vivo the morphology and function of naive and APP-deficient astrocytes in response to APP and well-established stressors. RESULTS: Overexpression of APP in cultured astrocytes led to remodeling of the intermediate filament network, enhancement of cytokine production, and activation of cellular programs centered around the interferon (IFN) pathway, all signs of reactive astrogliosis. Conversely, APP deletion abrogated remodeling of the intermediate filament network and blunted expression of IFN-stimulated gene products in response to lipopolysaccharide. Following traumatic brain injury (TBI), mouse reactive astrocytes also exhibited an association between APP and IFN, while APP deletion curbed the increase in glial fibrillary acidic protein observed canonically in astrocytes in response to TBI. CONCLUSIONS: The APP thus represents a candidate molecular inducer and regulator of reactive astrogliosis. This finding has implications for understanding pathophysiology of neurodegenerative and other diseases of the nervous system characterized by reactive astrogliosis and opens potential new therapeutic avenues targeting APP and its pathways to modulate reactive astrogliosis.

6.
Bioresour Technol ; 400: 130650, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38570099

RESUMEN

Illustrating the biodegradation processes of multi-component volatile organic compounds (VOCs) will expedite the implication of biotechnology in purifying industrial exhaust. Here, performance shifts of microbial fuel cell and biotrickling filter combined system (MFC-BTF) are investigated for removing single and dual components of toluene and benzene. Synchronous removal of toluene (95 %) and benzene (97 %) are achieved by MFC-BTF accompanied with the output current of 0.41 mA. Elevated content of extracellular polymeric substance facilitates the mass transfer of benzene with the presence of toluene. Strains of Bacteroidota, Proteobacteria and Chloroflexi contribute to the removal of dual components VOCs. Empty bed reaction time and the VOCs concentration are the important factors influencing their dissolution in the system. The biodegradation of toluene and benzene proceeds with 2-hydroxymuconic semialdehyde and o-hydroxybenzoic acid as the main intermediates. These results provide a comprehensive understanding of multi-component VOCs removal by MFC-BTF and guide the system design, optimization, and scale-up.

7.
J Fluoresc ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647962

RESUMEN

We have prepared a simple, universal and efficient coumarin-derived fluorescent probe (XDS1) to detecting HOCl. The experimental findings revealed that the introduction of HOCl produced an obvious quenching effect on the probe with high selectivity and sensitivity. The calculated limit of detection (LOD) was as low as 0.02 µM. Furthermore, an impressive response time of less than 10 s was observed when XDS1 detecting HOCl. Importantly, the probe XDS1 exhibited negligible cytotoxicity, thereby facilitating its application for imaging HOCl within biological environment. The probe XDS1 had been successfully used for specific detection in cells.

8.
Ecotoxicol Environ Saf ; 276: 116312, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38608383

RESUMEN

The use of bisphenol A (BPA) has been restricted due to its endocrine-disrupting effects. As a widely used alternative to BPA today, environmental levels of bisphenol Z (BPZ) continue to rise and accumulate in humans. Oocyte quality is critical for a successful pregnancy. Nevertheless, the toxic impacts of BPZ on the maturation of mammalian oocytes remain unexplored. Therefore, the impacts of BPZ and BPA on oocyte meiotic maturation were compared in an in vitro mouse oocyte culture model. Exposure to 150 µM of both BPZ and BPA disrupted the assembly of the meiotic spindle and the alignment of chromosomes, and BPZ exerted stronger toxicological effects than BPA. Furthermore, BPZ resulted in aberrant expression of F-actin, preventing the formation of the actin cap. Mechanistically, BPZ exposure disrupted the mitochondrial localization pattern, reduced mitochondrial membrane potential and ATP content, leading to impaired mitochondrial function. Further studies revealed that BPZ exposure resulted in oxidative stress and altered expression of genes associated with anti-oxidative stress. Moreover, BPZ induced severe DNA damage and triggered early apoptosis in oocytes, accompanied by impaired lysosomal function. Overall, the data in this study suggest that BPZ is not a safe alternative to BPA. BPZ can trigger early apoptosis by affecting mitochondrial function and causing oxidative stress and DNA damage in oocytes. These processes disrupt cytoskeletal assembly, arrest the cell cycle, and ultimately inhibit oocyte meiotic maturation.

9.
Mol Plant ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38615195

RESUMEN

During maize endosperm filling, sucrose not only serves as a source of carbon skeletons for storage-reserve synthesis, but also acts as a stimulus to promote this process. However, the molecular mechanism details about sucrose and endosperm filling are poorly understood. Here, we found that sucrose promoted the expression of endosperm-filling hub Opaque2 (O2), coordinating with storage-reserve accumulation. A protein kinase called SnRK1a1 attenuated O2-mediated transactivation, but sucrose released the suppression. SnRK1a1 phosphorylated O2 at Serine 41 (S41), negatively affecting its protein stability and transactivation ability. Mutation of SnRK1a1 resulted in larger seeds with increased kernel weight and storage reserves, while overexpression of SnRK1a1 had the opposite effect. Overexpression of the native O2 (O2-OE), phospho-dead (O2-SA) and phospho-mimetic (O2-SD) variants all increased 100-kernel weight. Although O2-SA seeds exhibited smaller kernel size, they synthesized higher starch and proteins, thereby resulting in larger vitreous endosperm and increased test weight. O2-SD seeds displayed larger kernel size, but had unchanged levels of storage reserves and test weight. O2-OE seeds represented an admixture of O2-SA and O2-SD, showing elevated kernel dimensions and nutrient storage. Overall, this study discovered a novel mechanism to modulate endosperm filling and S41 in O2 offered potential for engineering efforts to enhance storage-reserve accumulation and yield in maize.

10.
Nat Commun ; 15(1): 3209, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615033

RESUMEN

The manipulation of excitation modes and resultant emission colors in luminescent materials holds pivotal importance for encrypting information in anti-counterfeiting applications. Despite considerable achievements in multimodal and multicolor luminescent materials, existing options generally suffer from static monocolor emission under fixed external stimulation, rendering them vulnerability to replication. Achieving dynamic multimodal luminescence within a single material presents a promising yet challenging solution. Here, we report the development of a phosphor exhibiting dynamic multicolor photoluminescence (PL) and photo-thermo-mechanically responsive multimodal emissions through the incorporation of trace Mn2+ ions into a self-activated CaGa4O7 host. The resulting phosphor offers adjustable emission-color changing rates, controllable via re-excitation intervals and photoexcitation powers. Additionally, it demonstrates temperature-induced color reversal and anti-thermal-quenched emission, alongside reproducible elastic mechanoluminescence (ML) characterized by high mechanical durability. Theoretical calculations elucidate electron transfer pathways dominated by intrinsic interstitial defects and vacancies for dynamic multicolor emission. Mn2+ dopants serve a dual role in stabilizing nearby defects and introducing additional defect levels, enabling flexible multi-responsive luminescence. This developed phosphor facilitates evolutionary color/pattern displays in both temporal and spatial dimensions using readily available tools, offering significant promise for dynamic anticounterfeiting displays and multimode sensing applications.

11.
Front Pharmacol ; 15: 1250918, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601463

RESUMEN

Ischemic stroke (IS) is a major cause of mortality and disability among adults. Recanalization of blood vessels to facilitate timely reperfusion is the primary clinical approach; however, reperfusion itself may trigger cerebral ischemia-reperfusion injury. Emerging evidence strongly implicates the NLRP3 inflammasome as a potential therapeutic target, playing a key role in cerebral ischemia and reperfusion injury. The aberrant expression and function of NLRP3 inflammasome-mediated inflammation in cerebral ischemia have garnered considerable attention as a recent research focus. Accordingly, this review provides a comprehensive summary of the signaling pathways, pathological mechanisms, and intricate interactions involving NLRP3 inflammasomes in cerebral ischemia-reperfusion injury. Moreover, notable progress has been made in investigating the impact of natural plant products (e.g., Proanthocyanidins, methylliensinine, salidroside, α-asarone, acacia, curcumin, morin, ginsenoside Rd, paeoniflorin, breviscapine, sulforaphane, etc.) on regulating cerebral ischemia and reperfusion by modulating the NLRP3 inflammasome and mitigating the release of inflammatory cytokines. These findings aim to present novel insights that could contribute to the prevention and treatment of cerebral ischemia and reperfusion injury.

12.
Magn Reson Med ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38624162

RESUMEN

Deep learning (DL) has emerged as a leading approach in accelerating MRI. It employs deep neural networks to extract knowledge from available datasets and then applies the trained networks to reconstruct accurate images from limited measurements. Unlike natural image restoration problems, MRI involves physics-based imaging processes, unique data properties, and diverse imaging tasks. This domain knowledge needs to be integrated with data-driven approaches. Our review will introduce the significant challenges faced by such knowledge-driven DL approaches in the context of fast MRI along with several notable solutions, which include learning neural networks and addressing different imaging application scenarios. The traits and trends of these techniques have also been given which have shifted from supervised learning to semi-supervised learning, and finally, to unsupervised learning methods. In addition, MR vendors' choices of DL reconstruction have been provided along with some discussions on open questions and future directions, which are critical for the reliable imaging systems.

13.
Asian J Androl ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38624195

RESUMEN

ABSTRACT: This study compared different doublet and triplet therapies for efficacy and safety in metastatic hormone-sensitive prostate cancer (mHSPC). PubMed, EMBASE, and the Cochrane Library were comprehensively searched for eligible randomized controlled trials (RCTs) published from inception to October 2023. Interventions included abiraterone, apalutamide, enzalutamide, docetaxel, darolutamide, and androgen deprivation therapy (ADT), either as doublet or triplet therapies. The outcomes examined were overall survival (OS), progression-free survival (PFS), castration-resistant prostate cancer (CRPC)-free survival, time to symptomatic skeletal event (SSE), and toxicity. The surface under the cumulative ranking curve (SUCRA) was determined to identify the preferred treatments. Ten RCTs were included. The combination of darolutamide, docetaxel, and ADT had the highest SUCRA of 84.3 for OS, followed by combined abiraterone, docetaxel, and ADT (SUCRA = 71.6). The highest SUCRAs for PFS were observed for triplet therapies (abiraterone, docetaxel, and ADT [SUCRA = 74.9], followed by enzalutamide, docetaxel, and ADT [SUCRA = 74.3]) and other androgen receptor axis-targeted therapy-based doublet therapies (SUCRAs: 26.5-59.3). Darolutamide, docetaxel, and ADT had the highest SUCRAs, i.e., 80.8 and 84.0 regarding CRPC-free survival and time to SSE, respectively. Regarding Grade >3 adverse events (AEs), the SUCRAs of triplet therapies (SUCRAs: 14.8-31.5) were similar to that of docetaxel and ADT (SUCRA = 39.5). Three studies had a low risk of bias in all categories; the remaining studies had at least an unclear risk of bias in at least one category. Triplet therapy demonstrated potentially enhanced effectiveness than doublet therapy in mHSPC, with acceptable safety concerns. Darolutamide might be the optimal option for triplet therapy in combination with docetaxel and ADT.

14.
Foods ; 13(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38611386

RESUMEN

This study aimed to understand the genetic and metabolic traits of a Lactiplantibacillus plantarum JS21 strain and its probiotic abilities through laboratory tests and computer analysis. L. plantarum JS21 was isolated from a traditional fermented food known as "Jiangshui" in Hanzhong city. In this research, the complete genetic makeup of JS21 was determined using Illumina and PacBio technologies. The JS21 genome consisted of a 3.423 Mb circular chromosome and five plasmids. It was found to contain 3023 protein-coding genes, 16 tRNA genes, 64 rRNA operons, 40 non-coding RNA genes, 264 pseudogenes, and six CRISPR array regions. The GC content of the genome was 44.53%. Additionally, the genome harbored three complete prophages. The evolutionary relationship and the genome collinearity of JS21 were compared with other L. plantarum strains. The resistance genes identified in JS21 were inherent. Enzyme genes involved in the Embden-Meyerhof-Parnas (EMP) and phosphoketolase (PK) pathways were detected, indicating potential for facultative heterofermentative pathways. JS21 possessed bacteriocins plnE/plnF genes and genes for polyketide and terpenoid assembly, possibly contributing to its antibacterial properties against Escherichia coli (ATCC 25922), Escherichia coli (K88), Staphylococcus aureus (CMCC 26003), and Listeria monocytogenes (CICC 21635). Furthermore, JS21 carried genes for Na+/H+ antiporters, F0F1 ATPase, and other stress resistance genes, which may account for its ability to withstand simulated conditions of the human gastrointestinal tract in vitro. The high hydrophobicity of its cell surface suggested the potential for intestinal colonization. Overall, L. plantarum JS21 exhibited probiotic traits as evidenced by laboratory experiments and computational analysis, suggesting its suitability as a dietary supplement.

15.
World J Gastroenterol ; 30(9): 1143-1153, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38577185

RESUMEN

BACKGROUND: Endoscopic full-thickness resection (EFTR) of gastric submucosal tumors (SMTs) is safe and effective; however, postoperative wound management is equally important. Literature on suturing following EFTR for large (≥ 3 cm) SMTs is scarce and limited. AIM: To evaluate the efficacy and clinical value of double-nylon purse-string suture in closing postoperative wounds following EFTR of large (≥ 3 cm) SMTs. METHODS: We retrospectively analyzed the data of 85 patients with gastric SMTs in the fundus of the stomach or in the lesser curvature of the gastric body whose wounds were treated with double-nylon purse-string sutures after successful tumor resection at the Endoscopy Center of Renmin Hospital of Wuhan University. The operative, postoperative, and follow-up conditions of the patients were evaluated. RESULTS: All tumors were completely resected using EFTR. 36 (42.35%) patients had tumors located in the fundus of the stomach, and 49 (57.65%) had tumors located in the body of the stomach. All patients underwent suturing with double-nylon sutures after EFTR without laparoscopic assistance or further surgical treatment. Postoperative fever and stomach pain were reported in 13 (15.29%) and 14 (16.47%) patients, respectively. No serious adverse events occurred during the intraoperative or postoperative periods. A postoperative review of all patients revealed no residual or recurrent lesions. CONCLUSION: Double-nylon purse-string sutures can be used to successfully close wounds that cannot be completely closed with a single nylon suture, especially for large (≥ 3 cm) EFTR wounds in SMTs.


Asunto(s)
Resección Endoscópica de la Mucosa , Neoplasias Gástricas , Humanos , Nylons , Gastroscopía/efectos adversos , Estudios Retrospectivos , Neoplasias Gástricas/patología , Suturas , Resultado del Tratamiento
16.
JACS Au ; 4(2): 855-864, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38425932

RESUMEN

Graphene-based composites have shown significant potential in the treatment of biofilm infections in clinical settings due to their exceptional antimicrobial properties and specific mechanisms. Nevertheless, a comprehensive understanding of the influence exerted by nanoparticles embedded in the composites on the development and structure of biofilms is still lacking. Here, we fabricate different graphene oxide-silver nanoparticle (GAg) composite-modified substrates (GAgS) with varying densities of silver nanoparticles (AgNPs) and investigate their effects on planktonic bacterial adhesion, subsequent biofilm formation, and mature biofilm structure. Our findings indicate that the initial attachment of Pseudomonas aeruginosa cells during biofilm formation is determined by the density of AgNPs on the GAgS surface. In contrast, the subsequent transition from adherent bacteria to the biofilm is determined by GAgS's synergistic antimicrobial effect. There exists a threshold for the inhibitory performance of GAgS, where the 20 µg/cm2 GAg composite completely prevents biofilm formation; below this concentration, GAgS delays the development of the biofilm and causes structural changes in the mature biofilm with enhanced bacterial growth and increased production of extracellular polymeric substance. More importantly, GAgS have minimal impact on mammalian cell morphology and proliferation while not inducing hemolysis in red blood cells. These results suggest that GAg composites hold promise as a therapeutic approach for addressing medical devices and implant-associated biofilm infections.

17.
Am J Transl Res ; 16(2): 496-505, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38463594

RESUMEN

OBJECTIVE: To observe the effect of Butylphthalide soft capsules on improving cognitive function, activity of daily living, and dementia-related factors of elderly patients with Parkinson's disease dementia (PDD) during the coronavirus disease 2019 (COVID-19) pandemic. METHODS: The clinical data of 126 elderly patients with PDD admitted to the Second Affiliated Hospital of Zhengzhou University during the COVID-19 pandemic were analyzed retrospectively. Patients were assigned to a control group (conventional clinical treatment, n=50) and a research group (conventional clinical treatment combined with Butylphthalide soft capsules, n=76). The clinical response, clinical symptoms, cognitive function, activity of daily living (ADL), cerebral blood flow velocity, serum inflammatory factors, oxidative stress indices, neurotrophic factors, dementia-related factors, and drug safety were analyzed and compared between the two groups. RESULTS: The overall response rate was significantly higher in the research group than in the control group (97.37% vs. 84.00%, P=0.017). After treatment, the clinical symptom-based scores and levels of serum inflammatory factors, malondialdehyde, and Parkinson disease protein 7 were significantly lower in the research group than in the control group (all P<0.001); the cognitive function and ADL scores, cerebral blood flow velocities, and levels of catalase, glutathione peroxidase, superoxide dismutase, neurotrophic factors, and neurotrophin-3 were significantly higher in the research group (all P<0.001). The incidence of adverse reactions was comparable between the two groups (4.00% vs. 6.58%, P=0.825). CONCLUSION: Butylphthalide soft capsules have a definite effect and good safety in elderly patients with PDD during the COVID-19 pandemic.

18.
Heliyon ; 10(5): e27455, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38463772

RESUMEN

Objective: To investigate the diagnostic utility of multimodal ultrasound for fetal bowel dilatation (FBD) in different parts of the bowel and to examine its prognostic potential in FBD. Methods: This retrospective study analyzed 86 fetuses with a dilated bowel identified via ultrasound in a 10-month postnatal follow-up. Both two- and three dimensional (2D and 3D, respectively) ultrasound volume imaging were used to characterize dilation across different bowel sections. The optimal intestinal diameter cut-off values for pathological bowel dilatation were determined and a predictive model for neonatal surgery was developed. Results: The 86 cases of dilatation were distributed as follows: duodenal (n = 36); jejunum/ileum (n = 35); and colonic (n = 15). Duodenal dilatations presented the earliest during pregnancy compared to the other 2 groups (24.4 versus [vs.] 29 vs. 33.7 weeks respectively; p < 0.05). Cases with small intestinal dilatation were delivered earlier than those with colonic dilatation (p < 0.05). Infants with duodenal dilatation had the lowest birth weight and the highest rate of multi-system abnormalities (30.6% vs. 5.7% vs. 20%; p < 0.001). More than one-half of the multi-system abnormalities had chromosomal abnormalities (multiple, 54% vs. single, 12.5%; p = 0.015). There were 2 stillbirths, 24 induced labors, 44 postnatal surgeries, and 18 normal cases after birth. In predicting adverse neonatal outcomes of jejunum/ileum dilatation using a cut-off value of 15.5 mm small intestine diameter, sensitivity was 81.5%, specificity was 62.5%, and the area under the receiver operating characteristic curve (AUC) was 0.762 (p < 0.05). For colonic dilatation, using a cut-off value of 21.5 mm colon diameter: sensitivity was 83.3%, specificity was 77.8%, and AUC was 0.861 (p < 0.05). In detecting jejunum/ileum and colonic obstruction, 3D ultrasound demonstrated significantly better diagnostic efficiency than 2D ultrasound (p < 0.05). Using the backward stepwise selection method, a predictive model for neonatal surgery in patients with jejunum/ileum and colonic dilatation was established: logit (P) = -1.58 + (2.32 × polyhydramnios) +(2.0 × ascites) +(1.14 × hyperechogenic bowel). The AUC for the prediction model was 0.874 (p < 0.05), with 76% sensitivity and 94.1% specificity. Conclusions: Duodenal dilatation occurred earlier, with a higher incidence of chromosomal abnormalities and multi-system abnormalities than dilatation of other parts of the bowel. 3D ultrasound played an important role in the detection of jejunum/ileum and colon obstructions. Clinical signs, including polyhydramnios, ascites, and strong echoes in the intestine, can be used to predict neonatal surgery.

19.
Huan Jing Ke Xue ; 45(3): 1502-1511, 2024 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-38471865

RESUMEN

The investigation of regional water purification functionality and its influencing factors holds significant pragmatic implications in understanding the potential of regional water purification, guiding context-specific regional comprehensive planning schemes, and environmental conservation measures. The study site, situated along the southern coast of Hangzhou Bay, represents a prototypical region characterized by intricate land-sea interactions that bear substantial economic and ecological functions. By assimilating a meticulously collected topographical and land-use dataset, in conjunction with site-specific meteorological records, the water purification model embedded within the integrated valuation of ecosystem services and trade-offs (InVEST) framework was employed to scrutinize the spatiotemporal dynamics of nitrogen (N) and phosphorus (P) loads, discharges, and removals within the southern coast of Hangzhou Bay. The prime objective of this study was to unravel the differentials in water purification functionality under diverse developmental scenarios. The investigation unearthed distinct temporal discrepancies in N and P discharges and removals over two temporal dimensions. Relative to the benchmark year 2000, the total N load experienced a reduction of 276.72 t, whereas the N discharge and removals decreased by 140.86 and 137.86 t, respectively, in the year 2020. In contrast, the total P load observed an increase of 93.65 t, accompanied by a surge in P discharge and removals by 28.91 and 64.74 t, respectively. Spatially, the distribution pattern of N and P discharges exhibited a general inclination of elevated values in the northern region and subdued values in the southern region, with certain pockets in the southern region exhibiting pronounced peaks, intimately associated with land-use typologies. Simulation analyses conducted under distinct scenarios unveiled that under the natural development priority scenario, the N and P discharges within the study area amounted to 1 682.36 and 115.50 t, respectively. Conversely, under the scenario emphasizing economic development, the regional N and P discharges showed an approximate escalation of 83.02% and 79.93%, correspondingly. In contrast, under the scenario emphasizing environmental conservation, the regional N and P discharges exhibited a notable decline of approximately 79.96% and 56.44%, respectively. Hence, the scenario prioritizing the amalgamation of environmental conservation and development effectively reduced the N and P discharges within the region, bolstering the water purification functionality. The results derived from this study furnish a solid theoretical foundation for effectuating region-specific planning schemes fostering coordinated economic and ecological advancement within the study area.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...